$$\begin{split} \ddot{Z}_{T2} &= -\frac{\beta_n}{m_1} \dot{Z}_2 + \frac{\beta_n}{m_1} \dot{y}_1 - \frac{3\kappa_T + 3\kappa_n}{m_1} Z_2 + \frac{3\kappa_T}{m_1} Z_{T1} - \\ &+ \frac{3\kappa_T}{m_1} \varphi_{T1} + \frac{3\kappa_n}{m_1} y_2 \,; \end{split}$$

Выводы:

Получена система дифференциальных уравнений описывающих движение экипажа по вертикальным неровностям пути. Дальнейшая детализация плоских расчетных схем, количество принятых степеней свободы зависит от целей, которые решаются при исследовании колебаний.

ЛИТЕРАТУРА

- 1. Вершинский С.В., Данилов В.Н., Челноков И.И. Динамика вагона. М., Транспорт, 1978, 352 с.
- 2. Спиридонов Б.Д. Основы теории колебаний вагона на рессорном подвешивании. Гомель, Издательство БелИЖТ, 1972, 175 с.

УКД 629.45

Тулебаев Сакен Коптлеуович – управляющий директор по вагонному хозяйству (Астана, ТОО «Камкор-Менеджмент»)

К ВОПРОСУ РЕШЕНИЯ ЗАДАЧИ ДВИЖЕНИЯ ЭКИПАЖА ПО ПУТИ, ИМЕЮЩЕМУ ВЕРТИКАЛЬНЫЕ НЕРОВНОСТИ

Для изучения влияния на уровень контактных напряжений вертикальных сил, скорости движения экипажей и технического состояния пути необходимо знать значения динамических сил взаимодействия колеса и рельса.

Современные математические модели учитывают большое количество эксплуатационных факторов: геометрические неровности на поверхности катания колеса и рельса, упругие неровности пути и другие.

В программах для ЭВМ, разработанных во ВНИИЖТе под руководством доктора технических наук А.Я. Когана, приведены наиболее характерные по форме неровности рельсовых нитей [1]. Характеристика верхнего строения пути этой дороги идентична верхнему строению ряда направлений рассматриваемых участков железных дорог: ширина колеи 1067 мм, рельсы Р50, 1840 деревянных шпал на км, балласт щебеночный. Поэтому, в расчетах по определению вертикальных сил использованы программы ВНИИЖТа. В расчетах предусмотрены два технических состояния пути: с износом рельсов от 7мм (удовлетворительное состояние) и с износом рельсов от 7 до 10мм (неудовлетворительное состояние). Каждому состоянию пути соответствовал свой спектр параметров, характеризующих неровности пути. Расчеты проводили для наиболее распространенных типов подвижного состава: грозового вагона «GREMIERS-T₂» на двухосных тележках «Т₂», с одинарным рессорным подвешиванием, осевой нагрузкой до 180кН, для скорости движения 20, 40, 60 и 80км/ч. Задачу решали при значениях расчетных параметров системы, приведенных в таблице 1.

Таблица 1

Расчетные параметры системы «экипаж-путь» а) Параметры пути

No	Наименование	Обозначе-	Единица	Основные	Численные
	параметров	ние пара-	измерения	зависимости	значения
		метров			
1	2	3	4	5	6
1.	Модуль упругости рельсовой стали	E	кг/см ²	_	0,21·10 ⁷
2.	Модуль упругости пути	U_{z}	кг/см²	$U_{Z} = \frac{ab}{2l}c\alpha$	25-330
	ширина шпалы	а	СМ	_	20-24
	длина шпалы	b	СМ	_	200-240
	расстояние между шпалами	I	СМ		76-50
	коэффициент изгиба шпалы	α		_	0,9-0,95
	коэффициент постели	G	KM/CM ³	_	1-6
3.	Эпюра шпал		шп/км		1320, 1611, 1750, 1840, 2000
4.	Коэффициент	K_z^0		$K_Z^0 = \sqrt[4]{\frac{U_Z}{4E_A I}}$	0,006-0,014
	относительной жесткости пути	K_y^0		$\bigwedge^{K_Z} = \bigvee^{*} 4EJ$	0,012-0,018
5.	Момент инерции	J_z	CM ⁴		1020-2176
	рельса	J_y	cm ⁴	_	200-399
6.	Жесткость пути	C_z^0 C_y^0	км/см	$C_Z^0 = \frac{P}{Z_p}$	$(65-562)\cdot 10^3$
		C_y^0	км/см	Z Z_p	$(14-22)\cdot 10^3$
7.	Прогиб рельса	Z_{p}	СМ		$(1,8-13,8)\cdot 10^{-2}$
		Y_p	СМ	_	$(2,7-13,5)\cdot 10^{-2}$
8.	Распределенная масса	m_z^0	$\kappa \Gamma \cdot c^2 / cm^2$	$m_Z = m_{puu} +$	$(7,22-3,09)\cdot 10^{-3}$
	пути	m_y^0	$K\Gamma \cdot c^2/cM^2$	$+m_6+m_{zp}$	$(1,3-4,8)\cdot 10^{-3}$
9.	Распределенное	α_z	$K\Gamma \cdot c^2/cM^2$		(40-200)·10 ⁻²
	демпфирование в пути	α_{y}	кг·c ² /см ²		$(28-62)\cdot 10^{-2}$

ҚазККА Хабаршысы № 2 (63), 2010

б) Расчетные параметры грузового вагона

№	Наименование параметров	Обозна- чение параметров	Единица измерения	Численные значения
1	2	3	4	5
1.	Параметры надбуксового подвешивания: - вертикальная жесткость	C_z^+	кН/м	$0,100\cdot10^{16}$
	- коэффициент вертикального демпфирования	K_z^+	кН•с/м	$0,100\cdot10^{16}$
2.	Параметры центрального подвешивания:			
	- вертикальная жесткость	C_z^*	кН/м	$0,500\cdot10^4$
	- горизонтальная жесткость	C_z^* C_y^*	кН/м	0,600·10 ⁴
	- коэффициент вертикального демпфирования	K_z^+	кН•с/м	$0,153\cdot10^2$
	- коэффициент горизонтального демпфирования	K_y^*	кН·с/м	$0,375 \cdot 10^2$
3.	Угловая жесткость поворота колесной пары/тележки	C_{ψ}^{+}	кН∙м	$0,500\cdot10^5$
4.	Поперечная жесткость связи между колесной парой и тележкой	C_y^+	кН/м	$0,500\cdot10^5$
5.	Коэффициент углового демп- фирования кузова	K	кН·с/м	$0,100\cdot10^{3}$
6.	Macca:			
	- колесной пары	m	КГ	$0,108\cdot10^4$
	- надрессорной балки	m*	КГ	$0,700\cdot10^4$
	- 2-х осной тележки (в сборе)	m^+	КГ	$0,325\cdot10^4$
7.	Статическая осевая нагрузка	$P_{ m cr}$	кН	$0,187\cdot10^3$
8.	Центральный момент инерции 2-осной тележки относительно:			
	- вертикальной оси	I_Z^+	кг·м²	$0,700\cdot10^3$
	- горизонтальной поперечной оси	I_y^+	кг∙м²	$0,580\cdot10^3$
9.	Центральный момент инерции надрессорной балки (верт.)	I_Z	кг·м ²	$0,200\cdot10^3$
10.	Центральный момент инерции кузова (брутто):			
	- вертикальной оси	I_Z^*	кг∙м²	$0,150\cdot10^6$
	- горизонтальной поперечной оси	I_y^*	KΓ·M ²	$0,150\cdot10^{6}$
	- горизонтальной продольной оси	I_x^*	кг•м²	0,88·10 ⁶
11.	База:			

ҚазККА Хабаршысы № 2 (63), 2010

		1	1	1
No		Обозна-	Единица	Численные
	Наименование параметров	чение	измерения	значения
		параметров		
	- 2-осной тележки	$2a_{1}^{+}$	M	$0,160\cdot10^{1}$
	- вагона	$2a_1$	M	$0,100\cdot10^2$
12.	Радиус колеса	R_3	M	0,375
13.	Расстояние от центра массы кузова			
	до поверхности катания	$h^{\scriptscriptstyle +}$	M	$0,182 \cdot 10^{1}$
14.	Расстояние между центрами			
	буксовых узлов колесной пары	$b^{\scriptscriptstyle +}$	M	$0,210\cdot10^{1}$
15.	Скорость движения экипажа	V	км/ч	40, 60, 80
16.	Радиус кривой	R	M	80, 100-500
17.	Половина расстояния между	S_1	M	0,570
	кругами катания колесной пары			ŕ
18.	Возвышение наружного рельса	h_p	MM	40-120
19.	Половина ширины зазора	Δ	MM	0-28
	в колее			
20.	Коэффициент, учитывающий		1/м	$0,400\cdot10^{0}$
	влияние износа колеса			
21.	Состояние пути:	удовлетворительно - неудовлетворительн		летворительно
	- в продольной профиле]		
	- в плане и по уровню	удовлетворительно - неудовлетворительно		

Для решения задач использовались разработанные во ВНИИЖТе программы. Задача по определению сил, действующих на рельсовые нити, реализована как комплекс программ на языке Фортран-IV для ЭВМ серии ЕС. Этот комплекс программ состоит из двух частей, которые состыкованы для получения выходных характеристик задачи.

Для исследования вертикальных колебаний галопирования и подпрыгивания нами использована первая часть программ под названием «PUT». Структурная схема программ приведена на рисунке 1.

Программа и «PUT» состоит из трех основных подпрограмм: TRAP, WAY, TRAIN. Кроме того, для обращения матрацы использованы подпрограмм CINV₁, MATIN, а для решения системы дифференциальных уравнений — подпрограмма ROOTS. В подпрограмме TRAP реализованы операторы 1-17, 19, 22-25, в подпрограмме WAY-3-14, 19, 22-25, в подпрограмме TRAIN-29-40. Структурной схемой предусмотрены операторы 18, 20, 21, 26 и 38, которые реализуется подпрограммой STURM, являющейся одной из стыковочных для программ PUT и RAIL.

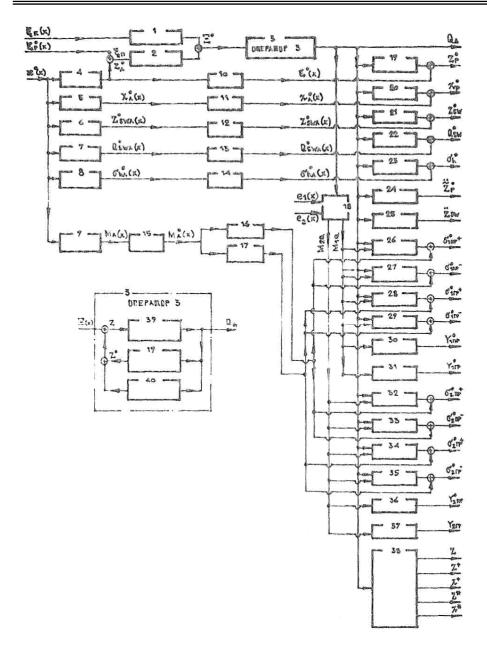
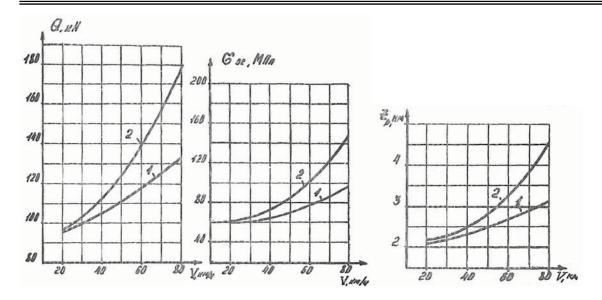



Рисунок 1 – Структурная схема решения задачи взаимодействия пути и подвижного состава при вертикальных колебаниях экипажа

Текст программ, определяющих воздействие экипажа на путь при колебаниях галопирования и подпрыгивания, приведен в работах [2-3] и др.

Результаты расчетов приведены в виде графиков на рисунке 2.

Q – вертикальная сила, к ${
m H}$ $\sigma_{\it oc}$ – осевое напряжение, М ${
m \Pia}$

 $Z_{\it p}$ – вертикальный прогиб рельса, мм;

1,2 – при удовлетворительном и неудовлетворительном состоянии пути

Рисунок 2 — Результаты исследования вертикальных сил взаимодействия системы «экипаж-путь»

Выводы:

Выполненные теоретические исследования, показали, что динамическое взаимодействие экипажа и пути при вертикальных колебаниях в значительной степени зависит от скорости движения экипажа, технического состояния пути, характеризующегося геометрическими и упругими неровностями, а также от ряда других факторов.

При скорости движения экипажа до 80км/ч максимальные значения динамических сил соответственно составляют: для удовлетворительного состояния пути $Q_{\rm дин1}$ =133кH и неудовлетворительного $Q_{\rm дин2}$ =179кH (рисунок 2,a). Величину динамических сил определяют максимальные значения контактных напряжений, формируемых влиянием скорости движения и состоянием пути. Как видно из рисунка 2,6, значения осевых напряжений в рельсах находятся в пределах допускаемых 160МПа и составляют 100МПа — для удовлетворительного состояния пути, в 150МПа — для неудовлетворительного состояния. Вертикальный прогиб рельсов соответственно достигает 3,2мм в первом случае и 4,5мм - во втором.

ЛИТЕРАТУРА

- 1. Коган А.Я. Вертикальные динамические силы, действующие на путь. М., Трансп., /Труды Всесоюз. науч.-исслед. ин-т ж.-д. трансп., вып. 402. 1969, 206 с.
- 2. Коган А.Я. Расчеты железнодорожного пути на вертикальную динамическую нагрузку. М., Транспорт, 1973, 78 с. Труды Всесоюз. науч.-исслед. ин-т ж.-д. трансп.; вып. 502.
- 3. Соколов М.М. Хусидов В.Д., Минкин Ю.Г. Динамическая нагруженность вагона. М., Транспорт, 1981, 206 с.